
Departments of Math and Computer Science

Final Report for
ACRL

Graphing the Kubernetes State Space to
Generate Synthetic Data

May 9, 2025

Team Members
Saya Kim-Suzuki
Karina Walker
Jaanvi Chopra
Baltazar Zuniga Ruiz
Maximilian McKnight (Spring Team Lead)
Henry Merrilees (Fall Team Lead)

Advisor
Professor Beth Trushkowsky

Liaison
Dr. David Morrison

Contents

1 Introduction 5
1.1 ACRL . 5
1.2 Problem background . 5
1.3 Our Task . 6
1.4 Overview of Approach . 6

2 Background Information 9
2.1 Understanding Kubernetes . 9
2.2 State Space Graphs and Traces 10
2.3 Literature review . 11
2.4 SimKube Architecture . 12

3 sk-gen: Our Solution for Synthetic Trace Generation 13
3.1 Importing a Trace . 14
3.2 Extracting Statistics . 15
3.3 Graph Expansion . 15
3.4 Graph Contraction . 16

3.4.1 Motivation for Contraction Hierarchies 16
3.4.2 Contraction Hierarchies 18
3.4.3 Nested Dissection . 19
3.4.4 Adapting Contraction Hierarchies to Trace Generation 20

3.5 Synthetic data . 21

4 Trace Data Collection 23
4.1 Exploration of the Public Trace Data from Alibaba 23

4.1.1 Data Translator . 24
4.1.2 Data Analysis Findings 24
4.1.3 Difficulties Sourcing Data 25

4.2 Getting Traces from DSB . 26

Contents Contents

5 Further Work 29
5.1 Improving DSB Data Generation 29
5.2 Getting SimKube Production Data 29
5.3 Evaluating How Realistic Our Synthetic Traces Are 30
5.4 Extensions to Contraction Hierarchy Modeling 30
5.5 Visualization . 30

6 Conclusion of Our Findings 33
6.1 Meeting Our Success Metrics 33
6.2 Contributions to This Problem Space as a Whole 34

7 Acknowledgments 35

A Appendix 37
A.1 Scalable DSB Script . 37
A.2 Overview of the Codebase . 37

4

Chapter 1

Introduction

1.1 ACRL

The Applied Computing Research Labs (ACRL), led by Dr. David Mor-
rison, was founded to address scheduling and optimization challenges in
distributed systems. Currently, ACRL is focused on addressing the lack of
simulation and testing tools for Kubernetes, a platform that automates the
management of computing tasks across many servers.

1.2 Problem background

Testing and troubleshooting Kubernetes can be difficult without a way to
simulate real-world conditions. To solve this, ACRL developed SimKube, a
simulator that creates realistic test environments for Kubernetes. SimKube
helps users understand and optimize system behaviors by showing how
configurations will perform at scale, reducing the risk of errors in live
environments.

Distributed systems comprise many small, isolated, and often highly in-
terdependent parts. Although a distributed architecture offers advantages
such as scalability, fault tolerance, and performance, it can be difficult to pin-
point the exact cause of issues such as latency spikes, service degradation,
or data inconsistency within the ecosystem—especially while maintaining
consistent quality of service. Currently, there are no robust, production-
ready solutions for simulating Kubernetes configurations locally, due to
the highly complex and distributed nature of the system. As Kubernetes
applications grow in size, it becomes impossible to run the entire system
on a single machine for testing and debugging. Thus, these applications

Our Task Introduction

run on clusters–groups of machines coordinated to work as a single unit.
This creates a need for distributed simulation tools like SimKube, which
allow developers to reproduce and analyze realistic cluster behavior across
multiple nodes without relying on production infrastructure.

1.3 Our Task

ACRL tasked the Harvey Mudd College Clinic team with investigating
a graph-based method to generate realistic simulation data for SimKube,
ACRL’s Kubernetes simulator. Generating high-quality data is important
but difficult, as questions such as what constitutes ’realistic’ or ’good’ data
are nontrivial due to a lack of concrete metrics for these characteristics.
This data is intended to help users of SimKube simulate variations of their
Kubernetes traces at scale in production-like environments, enabling better
testing, debugging, and optimization without risking disruption to live
systems.

1.4 Overview of Approach

This project was structured as a research effort to explore the potential of
graph-based methods to generate realistic simulation data for SimKube.
Recognizing the challenging scope of a complete solution, we focused on
building a reasonable first attempt at a solution that can inform future work.
We first identified the theoretical foundations needed to model Kubernetes
states. A Kubernetes state is a specific configuration of a Kubernetes cluster,
which includes settings such as the amount of memory and CPU allocated.
This information is written as YAML or JSON. We represented these states
as a graph by encoding each state as a node, and each state transition as
an edge. To capture realistic traits of Kubernetes behavior, we analyzed
preexisting Kubernetes data and proposed metrics that reflect the patterns
observed in production systems. We then developed code to generate new
hypothetical nodes and edges and condense the resulting graph to maintain
the most important nodes. Ultimately, we built a workflow that could
generate a rudimentary synthetic Kubernetes trace given the data collected
by SimKube in any production Kubernetes cluster.

This work serves as the foundation for a broader research initiative fo-
cused on how to model the Kubernetes state space. Although we did not
completely solve the problem of how to generate realistic synthetic Kuber-
netes data within the project timeline, our contributions laid the ground-

6

Introduction Overview of Approach

work for an NIST grant proposal submitted by ACRL. We hope that this
effort continues beyond our clinic project. Our conclusions highlight po-
tential paths for future implementation, while recognizing that further ex-
perimentation and validation will be necessary to integrate these ideas into
real-world Kubernetes systems.

7

Chapter 2

Background Information

This chapter introduces the relevant components of Kubernetes for our
project, defines state space graphs and traces, provides a literature review,
and covers SimKube’s architecture.

2.1 Understanding Kubernetes

To build a strong foundation for our project, we first focused on under-
standing the core concepts and functionality of Kubernetes. Kubernetes
uses a system of clusters, applications, pods, and deployments, among
other abstractions that are less relevant to this report.

• A cluster is a group of machines that are bound together to run con-
tainerized applications.

• An application is simply any software system that the user wishes to
run using the machines in the cluster. In Kubernetes, applications
are packaged along with their dependencies into containers, allowing
them to run reliably across various computing environments.

• A pod is the smallest deployable unit in Kubernetes and consists of
one or more containers that share resources on the same physical
machine.

• The Kubernetes state space is the collection of all possible states in
which a cluster or individual component can be.

Kubernetes is abstracted into two primary systems. The control plane is
the lightweight management system that serves as the front-end interface,

State Space Graphs and Traces Background Information

listening to commands and deciding what code needs to be run on what
computer. The data plane represents the machines that then receive those
commands and perform the computationally demanding work.

2.2 State Space Graphs and Traces

We define a Kubernetes state as a valid configuration for a Kubernetes
cluster, defining values such as memory, CPU, and replica count (copies of
the application requested) for pods within the cluster. Kubernetes stores
its current configuration state in YAML or JSON files, so each state can also
be considered a configuration file. The Kubernetes state space is the set of
all valid Kubernetes configurations. This space is extremely large, so we
will only represent subsections. We model the state space as a graph by
representing Kubernetes states as nodes, and edges as the corresponding
API call or "action" that changes the state. We begin by modeling an input
trace, which is a sequence of Kubernetes actions derived from a production
cluster. Figure 2.1 shows the sequence of filled circles as a trace, which
reflects production behavior. The empty circles are other possible states,
and the graph is generated from the trace and all the possible configurations
it can take from the trace.

Figure 2.1 Example State Space Graph

Then, from this trace, we can generate a graph by forming alternate
histories of actions that theoretically could have been applied to a node to

10

Background Information Literature review

form new nodes. In Figure 2.1, these new nodes are notated as empty circles.
And with this new state graph representing only possible actions, any walk
on the graph represents a trace that could conceivably be observed in a
running Kubernetes system. This abstraction enables us to systematically
explore the configuration space of a Kubernetes cluster and evaluate the
realism, frequency, or consequences of alternate execution paths.

Because the Kubernetes state space is effectively infinite, we have no hope
of modeling it all. The problem can be analogized to trying to understand
every combination of foods possible to make a dish for someone, instead it
is far more useful to understand what foods are commonly eaten and make
something similar to that, but a little bit different so they can try something
new but not so adventurous or hard to make that the resulting recipe is
unhelpful. We believe synthetic traces that are close to a user’s production
traces but different enough to represent reasonable alternatives will be the
most useful. We call this property representativeness and call a trace that
is similar but different, a "representative trace."

2.3 Literature review

Our literature review focused on key papers that provided insights into clus-
ter management and microservices. These papers shaped our understand-
ing of the current challenges and opportunities in Kubernetes simulation.
For example, Large-scale Cluster Management at Google with Borg outlined
scalability techniques and challenges, offering inspiration for modeling Ku-
bernetes’ architecture1. We learned that they can modify and reject requests
based on policies that a user can set, and that Kubernetes containers are as-
signed CPU and memory limits. Moreover, in reality, most applications
don’t consume all of their allocated resources, so total resources allocated
to CPU, memory, and storage often exceed the actual physical resources
available. The Open-Source Benchmark Suite for Microservices provided
an overview of microservices’ resource usage and implications for cloud
and edge systems, helping to refine our simulation goals2. We learned the
differences between microservices and monolithic applications, as well as
how Kubernetes is most useful in microservice management and is needed

1Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In:
Proceedings of the European Conference on Computer Systems (EuroSys). Bordeaux, France, 2015.

2Yu Gan et al. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. Accessed: 2024-09-16. Apr. 2019. url: https://dl.acm.
org/doi/10.1145/3297858.3304013#core-cited-by.

11

SimKube Architecture Background Information

to manage all the small, independent, self-contained software services. We
learned that tracing the performance of microservices is difficult due to
their complex interdependencies. Importantly, this paper describes Death-
StarBench (DSB), several realistic benchmark microservice applications for
Kubernetes, which we used to generate our traces. The DSB suite represents
several different real-world services and provides a variety of performance
challenges. Additionally, Bigger, Longer, and Fewer compared trace data
characteristics across organizations, guiding our approach to generating re-
alistic traces for simulation3. Reading these papers informed our conclusion
that trace data varies widely between companies, and is highly dependent
on the size and type of the services they are deploying.

2.4 SimKube Architecture

The four core components of SimKube include a tracer for collecting data
on control plane actions, a controller for simulation orchestration, a driver
for trace replay, and a CLI tool for user interaction, which together enable
realistic Kubernetes control plane behavior simulations on laptops.

SimKube functions as a Kubernetes simulation tool that enables users
to evaluate Kubernetes control plane component behavior through safe,
isolated testing. Users can record actions (also known as events) from the
control plane of their production Kubernetes cluster before SimKube re-
plays them in a simulation environment that operates actual control plane
components while mimicking the data plane. This allows simulating de-
cisions the control plane would make for systems containing thousands of
computers, with just a fraction of the resources on a single laptop. As a
result, SimKube makes it easy for developers to solve problems and test
configurations, and analyze Kubernetes component interactions in a fast
and cost-effective way.

A trace is a log of relevant events we wish to record. Since the tracing
format is not standardized, SimKube has a custom format for storing trace
data. Specifically, SimKube watches all configured resources and pods and
records any Kubernetes API call, in our graph represented as edges, that
would update the configuration. We call these changes trace events. By
recording the transition between states instead of the states themselves, we
can then reverse-engineer the states when we replay the trace later.

3George Amvrosiadis et al. Bigger, Longer, Fewer: what do cluster jobs look like outside Google?
Accessed: 2024-09-26. Oct. 2017. url: https://www.pdl.cmu.edu/PDL-FTP/CloudComputing/
CMU-PDL-17-104.pdf.

12

Chapter 3

sk-gen: Our Solution for
Synthetic Trace Generation

Our clinic project’s mission was to explore methods of synthetic Kubernetes
trace generation for use in SimKube. To solve that problem we designed
sk-gen, a library and method for synthetic trace generation. sk-gen takes
a trace recorded with SimKube and outputs a synthetically generated sim-
ilar trace. sk-gen has five stages, which will be explained in more detail
throughout this chapter.

Figure 3.1 Overview of architecture

Importing a Trace sk-gen: Our Solution for Synthetic Trace Generation

The five Stages are:

• Importing a Trace: In this step, we give sk-gen a trace in SimKube
format to use as a ground truth to base its synthetic trace on. We
model the Kubernetes actions as edges and the resulting states after
applying the actions as nodes, creating the beginnings of our graph.

• Extracting Statistics and Assigning Edge Weights: From our ground
truth trace, we extract information about the probability of actions. We
assign the extracted probabilities as edge weights to the corresponding
edges on our graph, making it a Markov chain.

• Graph Expansion: Now that we have turned our original trace into a
probabilistic graph we then expand the graph to cover possible valid
states that our original trace did not reach. We do this by uniformly
applying a series of predefined "atomic" actions, which each change
one field (such as memory or CPU allocation) in the configuration.

• Graph Contraction: The expanded form of the graph is unrealistic, as
it contains lots of marginal changes to one field of the configuration at
a time. We use a technique called contraction hierarchies to combine
multiple edges generated by atomic actions into a single, more realistic
composite action. This results in a smaller "contracted" graph.

• Trace generation: Now that we have a condensed and more realistic
graph of possible states we generate a synthetic trace by taking a ran-
dom walk along the edges in this graph and recording which actions
we take. Because the edges represent valid API changes that could
have happened, our extracted trace represents a potential alternative
history.

The following sections further describe each of these stages.

3.1 Importing a Trace

sk-gen was designed to use an existing trace as a reference. This is because
we don’t have a good way of determining what a generally representative
trace looks like. We address that lack of data by asking the user to submit
a ground truth trace and use that as a reference for what a representative
trace might look like. In this import phase, we set up the initial graph by
extracting the actions specified in the ground truth trace and applying them

14

sk-gen: Our Solution for Synthetic Trace Generation Extracting Statistics

to the starting state to get a graph containing only what happened in the
trace. From there, we will run the rest of our algorithm.

3.2 Extracting Statistics and Assigning Edge Weights

Next, we analyze the given ground truth trace and collect insights about
what synthetic traces might look like so that sk-gen could produce trace data
with probabilities. Given a ground truth trace, we next infer the probability
of an action happening to increase or decrease a resource (memory, CPU,
replica counts, etc.). For example, for memory we do this by aggregating
the number of actions that increased memory and comparing that to how
many actions decreased memory utilization. Dividing the number of ac-
tions of a certain type over the total number of actions in the trace gives an
approximation for the probability of an event occurring between two Ku-
bernetes configuration states. The probabilities gathered from submitted
ground truth traces are then added to our state space graph as the transition
probabilities between edges.

3.3 Graph Expansion

Now that we have a small ground graph representing the ground truth
trace alongside probabilities of various resources changing, we can add
new, hypothetical nodes. We do this by creating a set of pre-defined ac-
tions that change exactly one resource by a predefined amount within the
configuration. We then look at each node in our graph and add a new
edge and corresponding node for every atomic action that results in a valid
configuration that is already represented in the graph. The result is that
we now have every node possible to create by applying exactly one of our
predefined resource changes to the starting graph. We can repeat this mul-
tiple times to get an exponentially larger graph; the number of times this is
repeated is called the trace length.

Currently, the next possible actions are hard-coded based on the specific
subset of properties outlined above: CPU, memory, and replica counts.
We implemented basic guardrails on these actions, such as preventing the
replica count from falling below one. To generate new nodes, we used
the jq package, a tool that allows efficient manipulation of JSON objects,
since each Kubernetes configuration can be represented by a JSON object.
This approach gave us a concrete method for expanding a single trace into a
larger simulated state space. Additionally, we implemented functionality to

15

Graph Contraction sk-gen: Our Solution for Synthetic Trace Generation

input multiple starting traces, allowing the graph to expand from multiple
initial configurations extracted from the same production cluster.

As the Kubernetes API is vast, we decided to narrow our investiga-
tion into how CPU, memory, and replica counts of deployments change
throughout traces to create a simpler model that we could visualize con-
cretely. While replica counts change linearly, we decided to model CPU
and memory with a scaling factor of two, meaning that deployments can
only double or halve with each atomic action, as this mirrors what we feel
is reasonable based on reviewing other companies’ traces. Critically, this
also prevents us from setting the trace length infeasibly high to see a rep-
resentative range of memory sizes. We incorporated this behavior into our
sk-gen code by introducing a resource usage parameter. These values were
selected early on as they seemed reasonable and not because they were
carefully evaluated to be optimal.

3.4 Graph Contraction

The Kubernetes state space graph is very large, owing to the large number
of configuration options that exist. Theoretically, our graph should grow at
roughly 𝑑ℓ where 𝑑 is the degree of nodes defined by the number of potential
different transitions we model from a node and ℓ is the trace length. Since
we must define one transition for each API option we model, it is important
that we carefully model API changes and how we search through the state
space to extract information that will be useful to the user. Thus, we need a
better idea of which parts of the state space are meaningful and which can
be ignored; this maps directly onto how effectively our model can generate
realistic and useful trace data. Since we are currently generating our graph
in a breadth-first way, the growth of our graph surpasses the maximum
practical trace length, which is usually millions of steps long.

3.4.1 Motivation for Contraction Hierarchies

In our initial approach, we generate a state graph by repeatedly applying a
set of actions, each modifying a single configuration field by a fixed amount.
This method has several limitations:

• The Graph is Impractically Large: The expansion process creates a
massive state graph because it represents every possible state change
as a separate node and transition. This quickly leads to exponential
growth in graph size.

16

sk-gen: Our Solution for Synthetic Trace Generation Graph Contraction

• The Graph is Unrealistic: The transitions in this graph only reflect
simple changes where each action:

– Modifies a single field by a fixed amount or by a fixed multiple.
– Cannot represent changes that involve multiple fields at once.
– Excludes any transition where a field changes by a variable

amount.

• Composite Transitions are Missing: Real-world systems have com-
plex, composite changes where:

– A single action can change multiple fields simultaneously.
– The magnitude of change can vary. Our expanded state graph

cannot directly represent these composite transitions. To sim-
ulate them, we must decompose each composite change into a
sequence of single-field modifications, resulting in intermediate
states that do not exist in the real system. To reproduce a com-
posite trace event, we must serialize its changes into a series of
primitive trace events.

• Incorrect Simulation Behavior: When these primitive trace events are
replayed on SimKube, the underlying control plane will observe and
potentially react to these intermediate configuration states, producing
an outcome that may diverge from the composite trace event being
executed. Hence, this could make the simulation inaccurate.

• Exponential Complexity: Generating this graph has exponential time
complexity relative to the number of trace events, making it compu-
tationally expensive.

Why Merging Trace Events Is Not Enough: We need a method to merge
trace events to produce composite trace events in our output trace. Simply
merging repeated trace events of the same field is not enough, because
this does not account for cases where multiple fields change together. This
would only focus on one field at a time and would create an unrealistic
pattern, where each field’s value would strictly alternate up and down. In
reality, configuration fields often change gradually in one direction, such as
increasing resource limits as application loads grow.

Understanding the Need for Centrality: When we generate output
traces, we treat the state graph like a Markov process. This means that,
aside from what we can infer about the past from the current state, the

17

Graph Contraction sk-gen: Our Solution for Synthetic Trace Generation

entire history of how we got there doesn’t matter when picking the next
state for the trace. When choosing the next step, the only thing that matters
is the probabilities of where you can go next from where you are now. Also,
the more possible actions a state has, the less you can infer about the past
from it. However, this discards how "central" a state is: how often it tends
to show up in traces. By considering this centrality, we can safely merge
less important states, while still building traces that are realistic according
to the original graph structure.

3.4.2 Contraction Hierarchies

To overcome these problems, we use Contraction Hierarchies, a technique
inspired by optimizing shortest-path finding in road networks.

A road network can be encoded as a graph, with nodes corresponding to
points in physical space at which road segments (edges) intersect. Although
both a highway interchange and a driveway entrance may be encoded as a
node with, for instance, three edges (one for each attached navigable direc-
tion to/from the road-segment intersection), the interchange is generally
considered more central than the driveway entrance. The sense of "central-
ity" most relevant to the purposes of shortest-path optimization is that we
expect more (temporal) shortest paths to route through the interchange. By
"contracting" the driveway entrance, that is deleting its intersection node
and adding "shortcut" edges weighted to preserve all shortest paths between
the contracted node’s neighbors pairwise, the routing algorithm can search
through the main road without the overhead of visiting an intermediate
road that is relevant to only a small number of users.

Similarly, we can simplify our state graph by contracting less central
states by removing them and replacing them with shortcut edges that main-
tain the correct transitions, and preserving composite transitions by care-
fully choosing which states to merge, we can retain the realistic behavior of
multiple fields changing together.

To effectively apply Contraction Hierarchies, we must decide the order
in which the states are contracted. We chose the Nested Dissection algo-
rithm because it is an efficient method for determining the order in which
nodes are removed from the graph. This method is also popular when
implementing contraction hierarchies for their traditional use case, road
networks. This order, known as the "contraction order", is important be-
cause it affects how quickly we can find the shortest paths later. As nodes
are removed, the remaining graph is called the "core graph" at each step.
The final result is a "Contraction Hierarchy", which is a combination of all

18

sk-gen: Our Solution for Synthetic Trace Generation Graph Contraction

core graphs. The process is divided into two phases:

• Optimization Phase: We create the Contraction Hierarchy by choosing
the best contraction order using Nested Dissection and building the
necessary connections (shortcut edges) to preserve the shortest paths.

• Query Phase: We use the Contraction Hierarchy to look up the shortest
paths between two nodes.

3.4.3 Nested Dissection

Nested dissection is a graph partitioning strategy designed to efficiently
determine a good contraction order. It works by:

• Finding an approximately minimal "separator" set of nodes. These are
nodes that, when removed, split the two roughly equal disconnected
halves; that is, they do not contain connections between each other.

• The algorithm then marks the separator nodes to be contracted last,
as they are in some sense most "central".

• Then we recursively apply the same process to the two disconnected
halves. Because there are no connections between the two halves
created after the separator is removed, this means that each can be
considered an independent ordering problem, so we can continue to
recurse on each of them until we reach a base case1.

Why Separators are Central: The separator nodes are considered "cen-
tral" because they lie on many possible paths between nodes in the graph.
Contracting last ensures that the less central nodes, which are less critical
for path-finding, are removed first. This approach mirrors the idea that the
more frequently used paths should be preserved as long as possible.

Finding the Partitioning with METIS: To identify an optimal separator,
we need to partition the graph. As the partitioning step is NP-Hard, mean-
ing it is computationally expensive to solve exactly, and we cannot enforce
an upper bound on the number of nodes in the graph, we approximate the
partitioning step with the METIS algorithm2. This algorithm approximates

1Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
arXiv:1402.0402 [cs]. Aug. 2015. doi: 10.48550/arXiv.1402.0402. url: http://arxiv.org/abs/1402.
0402 (visited on 05/07/2025).

2George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”. en. In: SIAM Journal on Scientific Computing 20.1 (Jan.
1998), pp. 359–392. issn: 1064-8275, 1095-7197. doi: 10 .1137 /S1064827595287997. url:
http://epubs.siam.org/doi/10.1137/S1064827595287997 (visited on 05/07/2025).

19

Graph Contraction sk-gen: Our Solution for Synthetic Trace Generation

the partitioning by dividing the graph into two halves. The cut-set con-
sisted of the edges that connect the two halves of the partitioned graph,
and a vertex cover is the set of nodes such that every edge in the graph is
connected to at least one of these nodes. The separator is then chosen as the
minimum vertex cover of the cut-set3, as the smallest possible set of nodes
that covers all the edges in the cut-set.

3.4.4 Adapting Contraction Hierarchies to Trace Generation

The Contraction Hierarchies method conventionally improves the shortest-
path search performance by adding shortcuts to the original graph while
preserving all original nodes. This approach ensures that the shortest paths
are maintained in fewer intermediate steps. However, we aim to preserve
the most probable paths in a Markov chain while permanently omitting
contracted nodes. This requires several key adaptations.

Selective Use of Core Graphs: Rather than using the full Contraction
Hierarchy, we use the 𝑖th core graph, where 𝑖 is tuned to achieve the degree
of contraction to reduce the graph to any desired resource footprint. This
allows us to control the degree of contraction, balancing the graph size
against the retention of important paths.

No Traditional Query Phase: Unlike conventional Contraction Hierar-
chies, we do not have a query phase for shortest-path lookups. Instead, we
use Contraction Hierarchies to retain probable transitions in the Markov
process. While we care about retaining the most probable path, we inten-
tionally use less probable paths in our trace extraction process, so we want
to retain some of those as well.

Mapping Probabilities to Weights: The standard Contraction Hierar-
chies method depends on shortest-path algorithms, where edge weights are
combined additively. In contrast, the transition probabilities of a Markov
process are combined by multiplication. To adapt this, we transform tran-
sition probabilities 𝑝 into edge weights compatible with the shortest-path
algorithm using the following transformation of taking the logarithm and
inverting to obtain: − log 𝑝, which is also commonly known as surprisals,
where more probable transitions have lower weights. This preserves paths
of maximal rather than minimal probability.

Preserving Probability Consistency: When contracting a node, we con-
firm, the sum of outgoing transition probabilities from any state is one.

3Karypis and Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs”.

20

sk-gen: Our Solution for Synthetic Trace Generation Synthetic data

This is crucial for ensuring that our graph remains a valid Markov process.
Specifically, when a node is contracted, we must take care during contrac-
tion to redistribute the probability of “orphaned” edges (edges that lose
their endpoints due to contraction). This redistribution ensures that the to-
tal probability of outgoing transitions from any remaining node is correctly
maintained.

3.5 Trace Generation

The sk-gen workflow creates synthetic trace data from real Kubernetes traces
generated by SimKube. The final output results from conducting random
walks across the contracted graph, which we do through a Markov chain
model where, at each node, we decide which edge to take by using the
edge weights as probabilities and doing random sampling. This means
that more likely transitions occur more frequently, creating realistic behav-
ior patterns. The generated synthetic traces mimic Kubernetes behavior
patterns without duplicating the original input data. The generated traces
serve testing purposes without needing access to confidential production
data. Such purposes could include testing how a Kubernetes deployment
will react under different conditions, such as different resources allocated
or varying workloads. This is a safer and more flexible way to evaluate
system performance.

21

Chapter 4

Trace Data Collection

The previous chapter introduced sk-gen as our solution to create synthetic
Kubernetes traces for SimKube through graph-based modeling. The effec-
tiveness of this approach depends entirely on having realistic data available.
The graph expansion and contraction phases of sk-gen use statistical pat-
terns from real traces to assign edge weights, which produce plausible
synthetic alternatives. Acquiring production trace data became a major
development obstacle throughout our project. Our synthetic trace’s quality
and realism would significantly improve from better reference data, even
though sk-gen can generate plausible outputs from limited inputs. This
chapter explains our search for available trace sources, the standardization
challenges we faced, and the alternative methods we created to simulate
real-world traces using the Death Star Benchmark’s social media simula-
tion. Our goal was to verify our synthetic generation approaches while
building a stronger probabilistic modeling base for sk-gen.

4.1 Exploration of the Public Trace Data from Alibaba

As described in Section 3.1, sk-gen requires a ground truth trace as a ref-
erence point to build its graph model. The quality of this real trace data
directly impacts the realism of the synthetic outputs generated. Similarly,
Section 3.2 details how sk-gen derives transition probabilities from these
ground-truth traces to create a Markov chain model. To support these
critical components of our system, we needed to understand how real Ku-
bernetes deployments behave in production environments.

sk-gen models Kubernetes node state transitions as a graph, where each
node represents a specific resource configuration (e.g., a combination of

Exploration of the Public Trace Data from Alibaba Trace Data Collection

memory, CPU, replicas, and GPU), and edges represent actions that incre-
ment or decrement these resource dimensions. To assign realistic proba-
bilities to these transitions, as required by our edge weighting process in
Section 3.2, we needed to analyze how resource usage typically evolves in
production systems.

To understand this, we conducted a detailed analysis of real-world Ku-
bernetes trace data. Specifically, we used publicly available Alibaba traces
that have information on node-level resource usage, including CPU and
memory consumption over time. Our goal in exploring this dataset was to
extract edge weight probabilities between cluster states in our graph that
could guide the creation of more realistic synthetic traces and add those
probability values to our sk-gen code.

4.1.1 Data Translator

To ensure our Alibaba data worked with the existing SimKube code, we
wrote code to translate the Alibaba trace format into the SimKube trace
format. Because of the size of the Alibaba data, this first involved transfer-
ring it to a DuckDB database, which allowed us to retrieve and query the
data fast and efficiently. The conversion script then took the Alibaba data
stored in DuckDB and converted it into Kubernetes Deployment objects by
translating CPU and memory allocation changes into Kubernetes resource
specifications. The script also logged the timestamps to produce properly
formatted trace events with timestamps that SimKube could understand.

4.1.2 Data Analysis Findings

We analyzed the Alibaba trace data to identify patterns and distinguishing
features of real trace data. Through analyzing the Alibaba trace data, we
identified patterns in how CPU and memory usage change between dif-
ferent Kubernetes configurations. For instance, we discovered that while
the magnitude of memory changes varied, large memory increases were
the most common transition observed. However, aggregating the number
of actions that increase or decrease memory, we found the probabilities of
memory increasing or decreasing were roughly equal, about 50 percent for
each. Figure 4.1 shows the frequency of the various magnitudes of memory
changes that were most common from one Kubernetes state to another.

We used these results to populate the transition probabilities in our state
space graph as outlined in Section 3.2, enabling us to construct a Markov
chain model: a sequence of events where the probability of each event

24

Trace Data Collection Exploration of the Public Trace Data from Alibaba

Figure 4.1 Example Alibaba Data Exploration Finding

depends only on the current state. Because Kubernetes configurations are
declarative, the next state is based on the current state, where Kubernetes
figures out how to transition from one state to another.

By integrating these probabilities into our sk-gen code base, we enhanced
the realism and utility of the synthetic traces for testing and experimenta-
tion. While the Alibaba dataset does not represent all Kubernetes deploy-
ments, it is an example of how trace data can inform probabilistic modeling
of system states. Moreover, the methodology we developed is generaliz-
able: we created a script (attached to our code base) that can extract similar
statistical patterns from any trace dataset formatted in the SimKube style,
thereby automating the integration of empirical data into synthetic trace
generation.

Thus, using the Alibaba trace data provided a practical basis for refining
our synthetic trace generation approach. It demonstrated how existing
traces can be systematically analyzed and applied to synthetic traces.

4.1.3 Difficulties Sourcing Data

We found that there is no accepted standard of what constitutes a Kuber-
netes trace. As a result, there is variability in what information a trace may
contain about a given cluster across various datasets. The company Alibaba

25

Getting Traces from DSB Trace Data Collection

is rare in that it has publicly shared trace data. But even with the Alibaba
data, the trace formats are inconsistent. For example, the trace datasets vary
across years. In 2017, they published metrics on batch jobs and containers.
By contrast, in 2022, they published a trace on pods and microservices,
where the metrics they looked at were incomparable. Traces normally con-
tain sensitive information, so organizations are reticent to share, leading to
a lack of publicly accessible or comparable datasets for research purposes.
Alongside a lack of standards on what a trace is, the performance charac-
teristics and workload traces measure have been shown to vary greatly by
the size of the company and their use case1. The lack of available, compa-
rable, and diverse trace data presents a barrier to validating our work, as
it prevents us from establishing a baseline for what a real trace looks like.
A greater volume and diversity of data would make creating something
approaching “realistic” trace data easier. Thus, we are using the Alibaba
data as an example of real trace data, but it is important to note that it is not
representative of all trace data and is just an example. Our project would
greatly benefit from access to more trace data.

4.2 Getting Traces from DSB

Having realistic trace data is important for this project because it can give
us a sense of what characteristics are common in Kubernetes systems. We
can use these insights to tweak our synthetic data generation algorithm. To
help acquire more data, we turned to DeathStarBench: a suite of realistic
cloud applications designed to model the behavior of microservice-based
systems. One of its components is a social media application. This appli-
cation simulates the internal operations of a large-scale social networking
platform by reproducing typical user actions such as logging in, posting
content, and liking posts.

When the DeathStarBench social network is deployed on a Kubernetes
cluster, SimKube runs alongside it to capture a trace. SimKube does this
by monitoring pod activity, service requests, and network communication
within the cluster during the execution of the workload.

A benefit of using DeathStarBench is the ability to generate a wide range
of realistic traces by varying input parameters such as request rates, work-
load durations, and types of user interactions. This flexibility allows us
to explore how different conditions affect system performance. Because
the traces are generated locally and reproducibly, we are not dependent

1Amvrosiadis et al., Bigger, Longer, Fewer: what do cluster jobs look like outside Google?

26

Trace Data Collection Getting Traces from DSB

on companies making their production traces publicly available. There-
fore, DeathStarBench offers a controlled environment that closely mirrors
real-world systems, making it an effective and accessible tool for collecting
traces.

The traces collected from running DSB give us more examples of real-
world trace data. Since trace data is very hard to access and there are
not many publicly available sources from companies, generating our trace
data is very helpful to understand what traces can look like in the real
world and how they vary. We could theoretically compare our synthetically
generated trace data from sk-gen and help us identify whether the trace
data we generated has similar features, which we discuss further in Section
6.3. Running DSB to generate multiple different traces provides us with
numerous examples to compare our synthetic traces.

27

Chapter 5

Further Work

This chapter details extensions for our project, focusing on how we can
improve our methods. We begin by discussing improvements to our DSB
data generation process, including expanding parallel trace generation. We
then address the challenge of getting SimKube-compatible production data.
Then, we outline approaches for evaluating the realism of our synthetic
traces. We also propose enhancements to our contraction hierarchy model,
exploring metric-dependent heuristics and multi-phase contraction. Finally,
we explore how better visualization tools would help make our complex
state space graphs more interpretable.

5.1 Improving DSB Data Generation

DSB currently runs a single instance at a time, making it hard to collect a
large number of sample DSB traces. Additionally, our Python scripts, made
to generate traces from DSB, only run the social media benchmark; they do
not run the other benchmarks. A possible next step is to expand the bench-
mark to automatically generate multiple DSB traces in parallel. It could also
be interesting to gather traces across more of the DSB benchmarks, other
than just social media.

5.2 Getting SimKube Production Data

As mentioned, our search for data did not result in us finding a SimKube-
compatible trace. ACRL asked a few organizations if we could run SimKube
and were largely rejected. One next step would be to get production data

Evaluating How Realistic Our Synthetic Traces Are Further Work

from a SimKube trace to test our results more thoroughly. ACRL is already
in talks to set up SimKube in one major company, and it would be useful to
have production traces from more than one company.

5.3 Evaluating How Realistic Our Synthetic Traces Are

To evaluate realism, noting that there is no one-size-fits-all generated trace
data. Because different applications of Kubernetes have different needs
and specifications, trace data can look very different across organizations.
Thus, the first step in evaluating realism is deciding which metrics to focus
on, such as CPU utilization, and comparing the statistics of these metrics
(the change over time, distribution, range) between real trace data and the
generated trace data. We can thus say that the closer these statistics on
important metrics match, the more realistic the data. Another, more direct
way to evaluate realism is by taking the first part of an existing real trace
and making this the input to our algorithm to generate trace data. That
way, we can have a more direct comparison between one-to-one traces. Not
only that, we can observe at which point the synthetic trace deviates from
the real trace and use this as a signal to improve our generation code.

5.4 Extensions to Contraction Hierarchy Modeling

Nested Dissection depends only on the topology of the graph, however,
other “metric-dependent” contraction heuristics take into account the weights.
The existing code implementation is a generic heuristic, so these could be
implemented and easily tested to determine whether sensitivity to prob-
abilities can make for a better contraction. Additionally, saving space by
deleting nodes is not meaningful when the maximum resource usage is
determined by the input graph. We could experiment with graph synthe-
sis, which would not be possible otherwise, by proceeding with multiple
expansion-contraction phases in sequence before trace generation.

5.5 Visualization

While we made an early visualization of the Kubernetes state space, our
current code is hard to visualize due to the sheer size of the graphs produced
and the information encoded in each node. The representation uses YAML,
which is not easy to visualize as a graph. More work could be done to

30

Further Work Visualization

extract only the necessary information from the graphs sk-gen produces
to create a visual of all the relationships between nodes in the state space
graph.

31

Chapter 6

Conclusion of Our Findings

This chapter presents a review of our project’s achievements and their sig-
nificance. We begin by evaluating how we met our initial success criteria.
Then we discuss the broader contributions of our work to the field of Ku-
bernetes simulation and trace generation, and how this project supported a
grant proposal that is directly based on our findings.

6.1 Meeting Our Success Metrics

Our project aimed to explore the viability of using graph-based methods
to model a Kubernetes state space, to generate synthetic trace data, and
to develop ways to validate the realism of these traces. Throughout the
project, we have successfully met each of these goals.

First, we demonstrated that a graph-based model of Kubernetes config-
urations is viable. We built a state space graph representing transitions
between Kubernetes states, integrating probabilistic transitions extracted
from real-world data for memory and replica counts. This model allowed
us to simulate changes in a system state over time in a structured way, sup-
porting our initial hypothesis that graph-based methods could help capture
the complexity of Kubernetes state changes.

Secondly, we developed a synthetic trace generation pipeline (sk-gen)
that uses contraction hierarchies to efficiently traverse the Kubernetes state
space and produce traces. To inform the realism of these traces, we con-
ducted an in-depth statistical analysis of Alibaba’s publicly available traces
and extracted empirical transition probabilities. We also built tools to auto-
mate this process, making it easier to adapt our method to new datasets in
the future.

Contributions to This Problem Space as a Whole Conclusion of Our Findings

Overall, we achieved the goals we laid out at the beginning of the project.
We provided a practical proof of concept for realistic trace generation and
laid the groundwork for future evaluation and refinement as more real-
world data becomes available.

6.2 Contributions to This Problem Space as a Whole

Beyond meeting our immediate project goals, the work we did contributes
to the broader research effort of developing better simulation and training
tools for Kubernetes environments. By demonstrating that Kubernetes con-
figurations can be modeled as a graph and that realistic synthetic traces can
be generated through probabilistic transitions, we provide a new approach
for understanding and simulating complex distributed systems.

Our exploration of contraction hierarchies as a method for scaling syn-
thetic trace generation offers a promising avenue for making large-scale
simulation more feasible. Additionally, the tools we developed for extract-
ing real-world statistical patterns from traces create a foundation for more
realistic, data-driven simulation environments. These contributions are sig-
nificant in a field where access to real-world production traces is extremely
limited.

Importantly, the ideas we explored and validated throughout this project
are being incorporated into a grant proposal written by our liaison titled
"Generating Synthetic Traces for Autonomous Kubernetes Agents via Con-
traction Hierarchies". Our work throughout this year directly supports the
goals of this proposal.

34

Chapter 7

Acknowledgments

We would like to extend our heartfelt thanks to our liaison, Dr David Mor-
rison, whose unwavering support, guidance, and mentorship made a pro-
found difference throughout this project. From navigating complex chal-
lenges to offering thoughtful advice at every step, he was an invaluable part
of our research process. We are deeply grateful for his patience, insight,
and encouragement—we truly could not have done this without him.

We would also like to extend our thanks to our advisor, Professor Beth
Trushkowsky, for her steady guidance and support throughout this project.
She played a key role in shaping our meeting dynamics, keeping us on track,
and ensuring our work remained focused and purposeful. Her detailed
reviews and thoughtful critiques of our methods challenged us to grow
and refine our approach at every stage.

Finally, thank you to the clinic program for putting this whole program
together.

Appendix A

Appendix

A.1 Scalable DSB Script

One of our goals was to generate synthetic trace data. To help us evaluate
whether our generated trace data was legitimate, we wanted to use DSB
to generate example trace data from DSB. By deploying a service from
DSB multiple times, we were hoping to use it as a benchmark to compare
against our synthetically generated traces from sk-gen using contraction
hierarchies. We created a script to deploy DSB on AWS so that we could run
DSB multiple times to easily generate new trace data. During the creation
of this DSB script, we also developed a toolchain to automatically build
DSB and a running instance of SimKube into an AMI image using Packer
and automatically deploy it in parallel on AWS using Terraform. The script
runs a working version of SimKube and DSB. But to be useful for deploying
multiple DSB instances, the script would need to be updated to add options
for export, non-declarative running of instances, and a way of specifying
how long the user would like to run the benchmark.

A.2 Overview of the Codebase

Comprehensive documentation — including detailed function declarations,
a description of the code file structure, and setup instructions for running
the sk-gen code with the contraction hierarchy implementation—is pro-
vided in our code submission.

The sk-gen code uses cargo doc for documentation and provides function
declarations, motivations for any design decisions, and in-line comments.
The READ-ME contains setup instructions and an overall outline of the

Overview of the Codebase Appendix

project code structure. We also have a repository that contains all the
scripts used for analyzing the Alibaba data, translating data into SimKube
format, and running DSB.

38

